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Geologic Resources
Geologic History of the Project Area

The geologic history of the eastern Great Basin is preserved in rocks and geologic structures that span more than a
billion years, ranging from Precambrian sedimentary and metamorphicl rocks to Quaternary alluvial basin deposits
(Sweetkind et al. 2007) (Table F3.2-1). The geologic evolution of the project area can be divided into three general
phases (Levy and Christie-Blick 1989). These phases are described below.

Late Precambrian to the Middle Paleozoic. This period was dominated by sedimentation on the western continental
margin of the North American plate. Limestones, shales, and sandstones were deposited in shallow to deep marine
environments on a relatively stable continental shelf environment similar to that found today along the Atlantic and
Gulf Coast margins of the Unites States (U.S.) (Blakey 1997). Carbonate” rocks formed in a “carbonate platform”
geologic setting that contained shallow water reef and backreef sediments along with forereef and deep water
sediments to the west. Sedimentary rocks accumulated to a maximum thickness of about 30,000 feet during this phase
and these rocks constitute the vast majority of rocks found in the project area (Sweetkind et al. 2007).

Middle Paleozoic through Early Tertiary. The Antlers orogeny® during late Devonian and Mississippian interrupted
the deposition of carbonate platform sediments and resulted in the thrusting of volcanic and sedimentary rocks eastward
over the carbonate rocks. This gradual thrusting took place over millions of years and resulted in the deposition of a
thick sequence of siliciclastic* rocks over the carbonate rocks in advance of the slowly moving thrust plates (Poole and
Sandberg 1977). Carbonate deposition resumed in the late Paleozoic (Pennsylvanian and Permian periods) and
generated a thick sequence of sediments. During the early to middle Mesozoic in the southern part of the project area,
sedimentary rocks were deposited in both continental and shallow marine environments. A second deformation event
started in the late Jurassic and lasted through the early Tertiary. This major compressive event, referred to as the Sevier
orogeny, resulted in regional folding, thrusting, igneous intrusions, and deformation of all previous sedimentary rocks
and created the complex stratigraphic patterns found in the mountain ranges of the region of study today.

Middle through Late Cenozoic. The last period includes the Basin and Range faulting that created the alluvial basins
and mountain ranges of the project area. The third major phase of geologic history in the project area began with
extensive volcanism that started in the Eocene (early Tertiary) and lasted through the Miocene. Huge caldera®
complexes formed throughout the Great Basin and covered most of the exposed geologic units with extensive sheets of
ash-flow and air-fall tuffs (Best et al. 1989). The Paleozoic and Mesozoic geologic units deformed by the Sevier
orogeny had been mostly eroded by the beginning of this third geologic phase, and the terrain onto which the extensive
volcanic and volcaniclastic units were deposited was relatively level. Major ash-flow units, such as the Needles Range
Tuff, which erupted from the Indian Peak Caldera in western Utah, can be traced for tens of miles in both Utah and
eastern Nevada. Following this period of volcanism came extensional faulting, block uplifting, and formation of the
Basin and Range topography that characterizes the region of study today. In summary, the mountain ranges of the
project area are comprised of carbonate and clastic rocks from the Paleozoic and Mesozoic overlain by volcanic rocks
of Tertiary age.

Rocks modified in their mineralogy and texture resulting from high pressures and temperatures.

“Calcium carbonate or limestone.

3An episode of mountain building.

“Sedimentary rocks formed from transported rock fragments largely composed of silicate minerals.

®Caldera is a term for large basins or craters created by explosive volcanic eruptions. |
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Stratigraphy

The geologic units in the study area range from Precambrian in age (more than 570 million years ago [Ma]) to recent
deposits (Table 3.2-1). Figure F3.2-1 is a composite stratigraphic column of White Pine County that illustrates the
formation sequence through time. This figure also includes the geologic map symbols shown on Figure F3.2-2 and the
associated hydrogeologic units (HGUs) developed by SNWA and BLM (2008). The HGUs were developed by
grouping geologic map units with similar lithologic properties and inferred ability to transmit water. These units are
further described in Section 3.3.3 1, Hydrogeologic Conditions, and in Table 3.3-12. Aquifer Characteristics in the
Region of Study. Composite stratigraphic columns are presented for Lincoln County, Nevada (Figure F3.2-3), Clark
County, Nevada (Figure F3.2-4), and Western Utah (Figure F3.2-5). The following paragraphs provide a regional
overview of the stratigraphic sequences, from oldest to most recent.

The Precambrian rocks consist of metamorphic and igneous rocks overlain by later Precambrian quartzites and
argillites. The Precambrian quartzites and argillites are found in the Johnnie Formation, the McCoy Creek Group, the
lower part of the Prospect Mountain Quartzite, the latter of which overlaps into the Cambrian, and other quartzitic units
(Tschanz and Pampeyan 1970; Hose et al. 1976).

The entire section of sedimentary rock from Cambrian through Permian (Paleozoic Age) is up to 35,000 feet thick and
consists primarily of limestone, dolomite, shale, sandstone, and quartzite. The Paleozoic section also includes
metamorphic rocks derived from tectonic events or altered by emplacement of igneous rocks (Tschanz and
Pampeyan 1970).

Sedimentary rocks of the Mesozoic Age consist primarily of sandstone and shale, are up to about 10,000 feet thick, and
belong to the Moenkopi and Chinle Formations and the Aztec Sandstone. The Mesozoic rocks are found primarily in
southeast Lincoln County and in Clark County. Jurassic and Cretaceous intrusive igneous rocks consisting of
monzonite, quartz monzonite, and granodiorite are exposed locally throughout the region (Longwell et al. 1965;
Tschanz and Pampeyan 1970; Hose et al. 1976).

The Tertiary section is composed primarily of sedimentary deposits and volcanic rocks. The Tertiary sedimentary
formations described below are not continuous over the area and are defined in local areas. Equivalents may be present
from basin to basin, but are not identified as distinct formations. These sedimentary deposits are part of the basin-fill
sediments that range in age from lower Tertiary to Recent. The thickness of the basin fill varies from basin to basin, but
can be thousands of feet thick. The oldest sedimentary unit is the Sheep Pass Formation that is slightly more than
3,000 feet thick and is composed of lake-derived limestone, sandstone, and siltstone (Hose et al. 1976). The type
section for the Sheep Pass Formation is located on the crest of the Egan Range. The lower part of the formation is a
conglomerate that is composed of fragments from older Paleozoic formations. Invertebrate and vertebrate fossils in the
formation indicate that it is Eocene in age, but Peterson and Grow (1995) also indicate that it also may be Paleocene.
Age equivalent lacustrine limestones and clastic rocks were also deposited in other areas of the region, as in the North
Pahroc Range.

Other later Tertiary-age sedimentary deposits include the Pliocene Muddy Creek and Panaca Formations that are found
in the southern part of the area. The units were deposited in lakes and consist of sand, silt, clay, and limestone (Tschanz
and Pampeyan 1970). Other younger Tertiary sedimentary deposits are present in the district, but have no specific
formation names, but were dated on the basis of the presence of vertebrate fossils (Hose et al. 1976).

Much of the Tertiary rocks are composed of volcanic-derived materials, primarily ash-flow and ash-fall tuffs, that
erupted from a number of volcanic centers or calderas. The Tertiary volcanic rocks range in age from late Eocene to
Pliocene, but the thickness is undetermined. Some measured sections are over 2,000 feet thick (Cook 1965). However,
there is a general trend that the Tertiary volcanic rocks are thicker in the south (possibly from 5,000 to 10,000 feet
thick) and thinner to the north (Tschanz and Pampeyan 1970; Hose et al. 1976). In some areas, the Tertiary sediments
and volcanics are interbedded and some of the sedimentary deposits are composed primarily of volcanic materials.
Tertiary intrusive rocks also are exposed locally in several of the ranges in the region. The intrusives include granite,
granodiorite, monzonite, quartz monzonite, and diorite. These intrusives may have been the source for the rhyolitic,
dacitic, quartz latitic, and andesitic volcanic ash-flow tuffs.
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Unconsolidated sediments were deposited in all of the valleys in the region of study during the late Tertiary and
Quaternary. These sediments (referred to as basin fill sediments) are generally unconsolidated, but may become
increasingly semiconsolidated to consolidated with increasing thickness and depth. The thickness of these basin fill
deposits varies between the basins with the maximum thickness generally ranging from approximately 1,000 feet to
over 10,000 feet in individual basins (Welch et al. 2007). Sediments within the basin fill deposits include four different
types of alluvial and lacustrine (i.e. lake) materials: 1) predominately coarse-grained sand and gravel deposited by
streams as alluvial fans along the basin margins; 2) finer-grained silt and clay and playa deposits near the axis of the
valley; 3) fine-grained silt, clay, sand and evaporites deposited within Pleistocene lakes; and 4) alluvial stream channel
and floodplain deposits located near the central axis of the valley were valleys have active streams (such as the White
River in White River Valley, and Pahranagat Creek and Pahranagat Wash in Pahranagat Valley and Coyote Springs
Valley, respectively).

Late Pleistocene lake deposits associated with Lake Bonneville are present in the in the north and central portion of
Snake Valley and extend as far south as Baker (Welch et al. 2007). Lake Bonneville was a large ancient lake that
existed at the end of the ice age and at its largest extent covered most of the area in northwestern Utah and smaller
portions of eastern Nevada and southeastern Idaho. Lake deposits associated with smaller Pleistocene lakes restricted to
individual closed basins also occur within the basin fill sediments in Spring Valley and Cave Valley (Reheis 1999).

Structural Geology

The tectonic evolution of the eastern Great Basin has resulted in a number of structural features, many of which
overlap, that can affect the movement of groundwater and hydrothermal fluids. Because the structural features may
play an important role in groundwater movement within the mountain ranges, between the mountain ranges and the
valley sediments, and especially between mountain ranges, this section summarizes these structural features with
reference to the time period during which they were formed in the project area. These structural relationships are
further discussed in Section 3.3.2, Water Resources.

There are four main tectonic events in the geologic history of the eastern Great Basin that have produced the structural
features found today in the mountain ranges and also in the alluvial valleys and the basement rocks that underlie the
alluvial valleys. These four tectonic events are: 1) the late Devonian to late Mississippian Antler orogeny; 2) the late
Jurassic to early Tertiary Sevier orogeny; 3) the early to middle Tertiary period of extensive volcanism and caldera
development with associated fault development; and 4) the late Cenozoic Basin and Range extension with associated
graben® formation, uplift of mountain ranges, and eruption of basaltic lavas.

The Antler Orogeny. The Antler orogeny was a compressive deformation that caused the folding and east-directed
thrusting of early Paleozoic rocks in the northwestern part of the project area. This folding and thrusting formed a
north-trending highland that shed sediments eastward in advance of the moving thrust plates. Some of these thrust
plates deformed and moved over the sediments deposited in front of them as the deformation progressed (Langenheim
and Larson 1973; Carpenter et al. 1994). Most of the structural features associated with this period of deformation that
are preserved today are west of the project area (SNWA and BLM 2008). Many of the fine-grained clastic sediments
deposited east of the thrust sheets are preserved today in the project area.

The Sevier Orogeny. The Sevier orogeny resulted in widespread compressive deformation throughout the eastern
Great Basin and formed numerous north to northeast trending eastward-verging folds and thrust faults. Major thrust
sheets emplaced Precambrian and Paleozoic rocks over younger Paleozoic and Mesozoic units (Armstrong 1968).
Tectonic shortening caused by the deformation was in the range of 22 to 45 miles in southern Nevada (Stewart 1980).
For many of the thrust plates developed during this deformation, the present-day leading edge of the thrust plate is east
of the project area in Utah. The project area contains what has been referred to as the western hinterland of the
deformation. The Timpahute Range, the Worthington Mountains, the Golden Gate Range, Grant Range, Pancake
Range, and Newark Valley contain remnants of this period of deformation (Taylor et al. 2000). Thrust faults associated
with this period of deformation are commonly in the southern part of the project area and often contain gouge or

®A downthrown block between two normal faults of parallel strike, but opposing dips.
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mylonitic* zones along the thrust plane that can inhibit the movement of water. These extensive thrust sheets also
shoved carbonate rocks over clastic rocks and Precambrian metamorphic rocks over carbonate rocks.

Early to Middle Tertiary Volcanism. Extensive volcanism in the early to middle Tertiary produced numerous
calderas with their associated ring-fracture faulting. This period of volcanism covered the eastern Great Basin with
thick aerially extensive ash-flow tuff sheets. Many of the calderas were formed along structural lineaments related to
extensional faulting in eastern Nevada and western Utah. Associated with the calderas were intrusion of igneous stocks,
alteration of volcanics and pre-existing bedrock geologic units, and mineralization along faults, fractures, and other
permeable pathways.

Basin and Range Extension and Graben Formation. The development of the Basin and Range physiographic
province in the western U.S. began around 20 to 25 Ma and continues today. This physiography is characterized by
east-west extension and the formation of a horst® and graben topography with north-south trending mountain ranges
separated by intervening basins developed by graben faulting along normal faults that parallel the mountain ranges.
Basin development changed somewhat after 10 Ma and some older basins were uplifted as new ranges were developed.
An example is the presence of Miocene lacustrine limestones in the North Pahroc and Pahranagat ranges that were
originally deposited in earlier basins (Tschanz and Pampeyan 1970).

The dominant fault type developed during this period was the normal fault that allowed for the formation of grabens
and half-grabens by the downward movement of large structural blocks. The corresponding uplift of mountain ranges
sometimes produced a form of gravity slide fault called a “detachment” fault where an upper block of competent rock
slides along a low angle fault over a less competent rock composed of shale or other deformable fine-grained rock. An
example is the Snake Range decollement. This type of fault is often found above a metamophic core complex of older
rocks that have been stretched and thinned by uplift (Miller et al. 1983; Gans et al. 1989, 1985).

Basin and Range graben formation and the associated uplift of mountain ranges has resulted in fracturing of many
competent lithologic units, especially the carbonate rocks.

“A very fine lithified fault breccia commonly found in major thrust faults and produced by shearing and rolling during fault movement.
®An elongate, elevated block of crust forming a ridge or plateau, typically bounded by parallel, outward-dipping normal faults.
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