
An issue central to rangeland management
concerns the ability of plant communities to
respond to changing livestock management
practices. Range managers recognize the his-
toric impacts of overgrazing prior to passage of
the Taylor Grazing Act in 1934 but assume
that recent practices of grazing management
(e.g., rest-rotation, deferred rotation, short-dura-
tion grazing) are adequate to protect range-
land resources given appropriate stocking rates
(Laycock 1994). Removal of livestock from west-
ern arid and semiarid rangelands has been
advocated because of widespread evidence of
overgrazing and the impacts on biodiversity
(Fleischner 1994, Noss 1994, Donahue 1999).
Yet, reduction in numbers or removal of live-

stock may not result in rangeland improvement,
at least in arid and semiarid ecosystems such
as sagebrush steppe (West et al. 1984, Bork et
al. 1998, West 2000).

Traditional models of plant community suc-
cession (Clements 1916, Dyksterhuis 1949,
Huschle and Hironaka 1980) postulate gener-
ally linear pathways of succession to a pre-
dictable climax state following disturbances
such as fire and grazing. More recent commu-
nity succession models suggest that vegetation
can exist in multiple quasi-stable states depend-
ing on the history of the site, and that transi-
tion between states requires some biotic or
abiotic force to move the community beyond 
a threshold (Noy-Meir 1975, Hanley 1979,
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EFFECTS OF GRAZING EXCLUSION ON RANGELAND VEGETATION
AND SOILS, EAST CENTRAL IDAHO
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ABSTRACT.—Nineteen exclosures on sagebrush steppe and shadscale rangelands, varying in age from 18 to 38 years,
were sampled for plant species richness, plant composition, indicators of soil erosion, ground cover, vegetative cover,
and herb–low shrub layer screening cover. Features within the exclosures were compared with adjacent sites of the
same size that were open to grazing by livestock and wildlife. Species richness typically was slightly greater inside
exclosures than in adjacent grazed sites (median = 2 more species inside exclosures), but the difference was not signifi-
cant (P = 0.16). Similarity of plant community composition between exclosures and adjacent grazed sites ranged from
45% to 82%. Evidences of soil movement, soil pedestals, and soil flow patterns were all more pronounced outside exclo-
sures than inside (P ≤ 0.02), even though many sites were on flat to mild slopes (median slope = 12%). Meta-analysis of
the 19 exclosure sites indicated that grazing exclusion resulted in less bare ground cover compared with adjacent grazed
sites (P ≤ 0.05). The effect of grazing exclusion on visible soil surface cryptogams was significant (P ≤ 0.05), with gener-
ally greater cover inside exclosures. Cryptogam cover differences between grazed sites and exclosures tended to
increase with the number of years of grazing exclusion (r = 0.64, P = 0.046). Pseudoroegneria spicata, a principal live-
stock forage, averaged greater basal cover inside exclosures than outside on 4 of 10 sites where it occurred, although no
exclosure sites had greater P. spicata cover on grazed sites. Meta-analysis of the 10 sites indicated that grazing exclusion
resulted in greater P. spicata cover compared with adjacent grazed areas (P ≤ 0.05). Poa secunda, a short-growing grass
that initiates growth early in the spring and is not important livestock forage, averaged greater basal cover outside exclo-
sures on 5 of 15 sites where it occurred. Meta-analysis of the 15 sites indicated a significant treatment effect (P ≤ 0.05),
with greater Poa secunda basal cover outside exclosures. Grazing exclusion resulted in greater screening cover in the
herb–low shrub layer (0–0.5 m height; P ≤ 0.05). These results indicate that despite improved livestock grazing manage-
ment over the past half century, livestock grazing still can limit the potential of native plant communities in sagebrush
steppe ecosystems, and that the health of semiarid ecosystems can improve with livestock exclusion in the absence of
other disturbances. A few exclosure sites were similar for the measured parameters, suggesting that these sites were
ecologically stable and that exclusion of livestock grazing was not sufficient to move succession toward more pristine
conditions, at least within the time periods studied. Managed disturbance such as fire or mechanical brush treatments
may be necessary to restore herb productivity on these ecologically stable sites.

Key words: grazing exclosures, long-term vegetation change, erosion, vegetative cover, screening cover, cryptogams,
wildlife.
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Westoby et al. 1989, Tausch et al. 1993). The
first 10–15 years of heavy grazing by livestock
may have the greatest impact on vegetation
(Hull 1976). Once vegetation degrades to some
threshold, cessation of grazing may not halt
continued decline or at least may not allow the
community to improve (Whitford 1995). Cycles
of drought and soil changes may preclude re-
covery of plant communities to pregrazing con-
ditions. The availability of native plant seed,
availability of nutrients, and invasion of exotic
plants may alter the succession pathways avail-
able. Reduction of fine fuels because of live-
stock grazing and fire-suppression policies has
resulted in a change in the frequency and in-
tensity of natural fire, which historically played
an important role in rangeland dynamics.

Ecological advantages reported for livestock
grazing include enhanced seeding/germination
by trampling seed into the ground, fertilization
from feces and urine, and plant growth stimu-
lation from grazing (see reviews by Briske and
Richards 1994, Pieper 1994). However, over-
grazing can result in the reduction or extinc-
tion of forage preferred by livestock, degrada-
tion of biodiversity, introduction or dominance
of annuals and exotic plants, reduction or elim-
ination of cryptogamic soil crusts that can
reduce nitrogen available for plant growth,
increased soil erosion, and soil compaction with
impeded water infiltration (Fleischner 1994,
Belsky and Blumenthal 1997). Factors other
than livestock grazing can also affect vegeta-
tion dynamics. For example, cycles of drought
can have pronounced effects on the composi-
tion and structure of sagebrush steppe vegeta-
tion (Anderson and Inouye 2001).

Grazing exclosures have been constructed
in the Bureau of Land Management (BLM)
Challis Resource Area and surroundings since
the 1st half of the 20th century (Idaho Depart-
ment of Fish and Game records, Salmon, ID).
Yet, few of these exclosures apparently were
sampled when constructed or the records have
been lost, and even fewer have been evaluated
in the intervening years. This research addresses
the question, What are the effects on vegeta-
tion and soils of exclusion of livestock grazing
after a long history of grazing (and often over-
grazing)? I assumed in this study that sites
were in similar condition inside and outside
the exclosures at the time of construction, and
that paired sites experienced similar environ-
mental conditions since fencing so that any

observed differences were a result of continued
grazing or its absence. My expectation was
that sites inside exclosures would have greater
cover of palatable grasses, perennial forbs,
cryptogams, and screening cover, and less bare
ground than adjacent sites outside exclosures.
I also expected that evidence of soil erosion
would be less pronounced within exclosures
than outside.

STUDY AREA

The exclosures were situated on high-ele-
vation (1585–2315 m), federally managed pub-
lic rangelands in east central Idaho (Table 1).
Vegetation varied from lower-elevation xeric
communities of Atriplex confertifolia and Atri-
plex spinosa commonly growing on alkaline
soils, or Artemisia tridentata spp. wyomingen-
sis on well-drained soils, to more mesic com-
munities of Artemisia tripartita or Artemisia
tridentata spp. vaseyana sometimes mixed
with Purshia tridentata bordering Pseudotsuga
menziesii at higher elevations. Slope gradients
ranged from nearly flat (1%) to 20%, and aspect
of the exclosure sites included most exposures.
Exclosure sizes varied from 0.04 ha to 0.8 ha,
and the time during which grazing was ex-
cluded spanned 18 to 38 years.

Climate at the exclosure sites is semiarid
and cool with average annual precipitation
ranging from 128 mm to 559 mm (based on
soil descriptions, Natural Resources Conser-
vation Service 2002a). Average summer tem-
perature at Challis is 20°C, and winters aver-
age –8°C. Climate averages can be deceiving
for this area because of the substantial vari-
ability due to rugged topography and localized
storms. The frost-free period may range from
60 to 100 days (Bureau of Land Management
1998). A consistent annual weather record for
Challis began about 1932 (Fig. 1). Drought
was apparent in the 1930s and broke in 1940.
Drought returned in the late 1940s and con-
tinued through about 1963. The late 1980s
through the early 1990s also experienced
drought. In contrast, the years 1993, 1995, and
1998 were exceptionally wet.

Precipitation in 1999, when the exclosures
were sampled, was generally less than the long-
term average. This was particularly true during
mid- to late summer when sampling occurred.
Plant growth in 1999 was initially slowed by a
cool June, followed by rapid growth in July that
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TABLE 1. Exclosure site characteristics and topography. Predicted range of annual precipitation is based on soil char-
acteristics (Natural Resources Conservation Service 2002a). Plant association: ACHY = Achnatherum hymenoides,
ARAR = Artemisia arbuscula, ARFR = Artemisia frigida, ARTR4 = Artemisia tripartita, ARTRV = Artemisia tridentata
vaseyana, ARTRW = Artemisia tridentata, ATCO = Atriplex confertifolia, FEID = Festuca idahoensis, HECO = Hes-
perostipa comata, POSE = Poa secunda, PSSP = Pseudoroegneria spicata, SPAR = Sphaeromeria argentea, and SPCR
= Sporobolus cryptandrus. Community similarity index is described in Methods.

Predicted
precipitation Elev. Slope Size Years Similarity

Exclosure (mm) Plant association (m) Aspect (%) (ha) enclosed index (%)

Eagle Rock 128–205 ATCO/ACHY-HECO 1585 NE 8 0.81 22 70
Meadow Creek 178–254 ATCO/SPCR 1804 N 3 0.4 38 80
Leaton Gulch 179–256 ATCO/SPCR 1670 W 8 0.4 38 82
Antelope Flats 203–279 SPAR-ARFR/POSE-HECO 1938 N 1 0.04 28 75
McGowan Creek 203–305 ARTRW/HECO 1987 W 12 0.08 18 73
Centennial Flats 203–305 ARTRW/PSSP 1938 E 16 0.36 18 78
Sage Creek No. 2 203–305 ARTRW/PSSP 1951 NE 1 0.08 18 60
Sage Creek No. 1 203–305 ARTRW/PSSP 1975 NE 1 0.12 18 70
East Fork Fan 203–305 ARTRW/PSSP 1743 NE 12 0.36 18 82
Boneyard Gulch 203–305 ARTRW/PSSP 1792 E 12 0.45 29 45
Bradshaw Basin 203–305 ARTRW/PSSP 2219 NW 12 0.04 28 69
Jeff Flats No. 1 279–330 ARTRW/PSSP 1853 NE 12 0.04 28 61
Donkey Hills 203–305 ARAR/PSSP 2146 NE 2 0.4 38 78
Jeff Flats No. 2 305–406 ARTR4/FEID 1926 N 12 0.32 19 80
Broken Wagon 330–406 ARTR4/FEID 2085 N 12 0.08 18 54
Second Spring 305–406 ARTR4/FEID 2292 S 12 0.81 21 77
Martin Creek 330–406 ARTRV/FEID-PSSP 2012 SE 20 0.4 31 72
Third Spring 406–559 ARTRV/FEID 2134 S 20 0.36 22 75
Horse Heaven 406–559 ARTRV/FEID 2316 N 5 0.45 29 54

Fig. 1. Long-term annual precipitation records for Challis, Idaho. Median distance to the 19 exclosures from Challis
was 23.2 km (range = 8.4–52.3 km).



terminated in early August with desiccation,
particularly among forbs.

Livestock grazing of the region began in
the 1860s, with overgrazing noted by the 1880s
and probably continuing for 40–50 years (Shoup
1935). Domestic sheep numbers began increas-
ing in the late 1880s, reaching >50,000 sheep
grazing Bureau of Land Management lands in
the Challis area by the 1920s (Bureau of Land
Management records, Salmon, ID). After the
1950s cattle became the principal livestock
grazing the area. In the 1970s planned grazing
systems were implemented.

METHODS

I sampled upland grazing exclosures on
public lands in which at least half the area
inside the exclosure appeared undisturbed
since its construction. Visually disturbed areas
either inside or outside exclosures (i.e., soil
disturbance from range improvements or ex-
perimental seeding) were not sampled. I sam-
pled inside each exclosure and at a nearby
(<30 m distant) site outside the exclosure ex-
hibiting similar size, vegetation, aspect, slope,
and elevation as the exclosure. Therefore, sam-
pling site selection emphasized similarities
between the exclosure and outside.

Sample points, 5–15 m apart (depending on
the size of the exclosure, 10–25 samples were
collected per treatment), were systematically
located on a randomly positioned grid to
achieve good dispersion of points throughout
the exclosure and adjacent grazed site. A 5-m
buffer zone inside and outside the exclosure
fence was not sampled to avoid possible effects
of the fence (e.g., livestock trailing and tram-
pling, fertilization from birds perched on the
fence or other animals concentrating along the
fence). At each sampling point I measured
horizontal vegetation cover, ground cover, and
screening cover (vertical vegetation cover). Soil
surface condition was evaluated for each treat-
ment as a whole.

I measured canopy cover of shrubs and
forbs, basal cover of graminoids, and ground
cover of bare ground, litter, and cryptogams
using a 50 × 100-cm point-interception frame
(Floyd and Anderson 1982) placed at each
sampling point. Each point-interception frame
contained 36 intersection points (created by 2
superimposed grids, 15 cm apart, of 10 × 10-cm
squares of string) at which cover was recorded.

The point-interception frame was leveled with
a bubble level to maintain a consistent vertical
projection on the ground. All plant species
beneath each point were recorded based on
“hits” of live vegetation of forbs and shrubs and
basal areas of graminoids. Points were visually
projected through the overstory so that a sin-
gle point could include more than 1 species
but not ground cover. Points intercepting bare
ground, litter, or cryptogams were recorded only
if no vascular plants occurred above the point.

At 3 exclosure sites I used a 20 × 50-cm
plot frame to measure cover. I did this either
because vehicle access was >1.6 km from the
exclosure and the combination of equipment
was too cumbersome to transport to the sites,
or because shrubs were too tall and dense to
use the point-interception frame effectively.
Cover was estimated using Daubenmire’s (1959)
cover classes (in percentage): 0, 1–5, 6–25,
26–50, 51–75, 76–95, and 96–100.

Screening cover is important to rangeland
wildlife such as nesting Greater Sage-Grouse
(Centrocercus urophasianus) and pronghorn
(Antilocapra americana) fawns, both for secu-
rity from predators and for thermal cover (Aut-
enreith 1978, Connelly et al. 2000). Screening
cover was estimated at each sampling point
using a 1.5-m-tall cover pole (Griffith and
Youtie 1988). The pole was divided into three
0.5-m sections, with each section divided into
five 10-cm segments. The 3 sections were des-
ignated as herb–low shrub layer (0–0.5 m
height), medium shrub layer (0.5–1.0 m height),
and tall shrub layer (1.0–1.5 m height). The
number of 10-cm segments at least 50% cov-
ered by live vegetation was recorded separately
for each of the three 0.5-m sections. Four read-
ings at a distance of 5 m from each of the car-
dinal directions were taken at each sampling
point. The 2 lower layers were read from a
kneeling position to reduce parallax error.
Analyses of screening cover comparisons are
presented only for the herb–low shrub layer
because many fewer sites contained screening
cover in the 2 taller layers.

I evaluated soil erosion using 7 indicators of
soil surface condition: evidence of soil move-
ment, surface litter, surface rock, soil pedestals,
evidence of flow patterns, rills, and gullies
(Bureau of Land Management 1973). Soil sur-
face condition factors were evaluated for each
exclosure site sampled (i.e., separately for the
entire area within the exclosure and for the
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sampled area outside the exclosure). Each ero-
sion indicator was evaluated on an ordinal
scale with 1 indicating little or no evidence of
erosion and 5 indicating severe erosion.

Species richness was compared between
the exclosure and the adjacent grazed area.
Sorensen’s community coefficient (similarity
index), weighted by % cover (Barbour et al.
1980), was calculated for each exclosure site.
Depending on the distribution of the data for
each parameter estimated, I used an unpaired
t test or its nonparametric equivalent (Mann-
Whitney rank sum test) to compare the effects
of grazing and grazing exclusion. Correlations
between the duration of grazing exclusion and
measured parameters were analyzed using
Pearson’s correlation index. Syntheses across
exclosure sites of treatment effects for each of
the cover parameters estimated were analyzed
using meta-analytic methods (Rosenberg et al.
2000). The treatment effect size (with the area
open to grazing representing the control and
the area excluding grazing representing the
experimental treatment) for each exclosure
site was standardized as the natural log of the
response ratio (the ratio of the mean estimate
within the exclosure to that of the area open to
grazing). This measure of effect size estimates
the change resulting from grazing exclusion. A
random-effects model was used because the
vegetation communities differed among exclo-
sures such that the response to grazing exclu-
sion would not be expected to be consistent
among exclosure sites. Confidence intervals
about the mean effect size were calculated using
bias-corrected bootstrapping (Rosenberg et al.
2000). Indicators of soil erosion were com-
pared across all exclosures using a Wilcoxon
signed rank test. Significance level was set at
P ≤ 0.05. Plant names follow the National
PLANTS database (Natural Resources Con-
servation Service 2002b).

RESULTS

I encountered 20 species of graminoids, 60
species of forbs, 20 species of shrubs, and 1
tree species (Pseudotsuga menziesii) at the 19
exclosure sites. Nonnative plants were sparse
(only 6 species found) and, except for Agropy-
ron cristatum seeded at 3 sites, had only trace
amounts of cover at any exclosure site.

Species richness observed at each of the
exclosure sites ranged from 8 to 31 species,

with differences between treatments ranging
from 0 to 9 species. Twelve of 19 sites had
greater species richness within exclosures than
outside (median difference = 2 more species
within exclosures than on adjacent grazed sites),
but this difference was not significant (P =
0.16). Community similarity ranged from 45%
to 82% (median = 73%), with Boneyard Gulch
having the lowest community similarity (45%)
of 19 exclosure sites studied (Table 1). The
number of years of grazing exclusion was not
related either to differences in species richness
between treatments or to community similar-
ity (r ≤ 0.13, P ≥ 0.60).

Slope steepness at the exclosure sites ranged
from 1% to 20% (median = 12%; Table 1).
Exclusion of livestock grazing resulted in a
consistent pattern of improved soil surface
conditions compared with areas open to graz-
ing. Evidence of soil movement, soil pedestals,
and soil flow patterns were all more pronounced
outside exclosures than inside (n = 19; P ≤
0.02).

Cover of bare ground ranged from 3% to
51%, with differences between treatments
ranging from 0% to 39%. The amount of bare
ground was greater outside exclosures at 9 of
19 sites (P ≤ 0.017), and there was no apparent
relationship between the duration of grazing
exclusion and bare ground differences between
grazed and exclosure treatments (Fig. 2). Al-
though the correlation between slope steep-
ness and the difference between excluded and
grazed sites was not significant (P = 0.07),
there was a tendency for flatter sites to have
greater differences between treatments than
steeper sites (r = 0.42). Meta-analysis of the
19 exclosure sites indicated that the amount of
bare ground exposed was reduced when graz-
ing was excluded (P ≤ 0.05).

Differences between treatments for ground
cover of litter were variable but were signifi-
cant at 5 exclosure sites. Two sites had greater
litter cover outside the exclosures and 3 had
greater litter cover inside. There was no corre-
lation between litter cover differences between
treatments and the duration of grazing exclu-
sion (r = 0.02, P = 0.92). In addition, there
was no consistent effect of grazing exclusion
when all exclosure sites were analyzed together.

Soil cryptogams, found at 10 sites, had sig-
nificantly greater cover inside exclosures at 6
sites compared with adjacent grazed areas (P ≤
0.015; Fig. 3). Cover ranged from 1% to 36%,
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Fig. 2. Comparison between exclosure sites and adjacent grazed sites for bare ground cover, arranged by number of
years of grazing exclusion within the exclosure. N. S. groups those sites where the difference between exclosure and
grazed sites was not statistically significant; P < 0.05 groups those sites where treatment differences were statistically
significant. Error bars denote 95% confidence intervals.

Fig. 3. Comparison between exclosure sites and adjacent grazed sites for cover of crytogams, arranged by number of
years of grazing exclusion within the exclosure. N. S. groups those sites where the difference between exclosure and
grazed sites was not statistically significant; P < 0.05 groups those sites where treatment differences were statistically
significant. Error bars denote 95% confidence intervals.



with cover differences between treatments
ranging from 1% to 29%. Cryptogam cover dif-
ferences between exclosures and adjacent
grazed areas tended to increase with more
years of grazing exclusion (r = 0.64, P =
0.046). Meta-analysis of all 10 sites indicated a
significant treatment effect with increased
cryptogam cover corresponding to exclusion of
grazing (P ≤ 0.05).

Graminoid basal cover ranged from 5% to
26%. The 2 most consistently encountered
grasses, and generally with the largest cover,
were Pseudoroegneria spicata and Poa secunda.
Other grasses common (≥5% basal cover) on
some sites included Festuca idahoensis (2 sites),
Sporobolus cryptandrus (1 site), and Agropyron
cristatum (1 site).

Pseudoroegneria spicata, probably the most
important livestock forage species in the region
(Yeo 1981), occurred at 10 exclosure sites. Basal
cover of P. spicata was significantly greater
within the exclosures at 4 sites (P ≤ 0.037),
with cover differences ranging from 6% to
10% (Fig. 4). No sites had significantly greater
cover of P. spicata outside the exclosures.
There was no apparent relationship between
the duration of grazing exclusion and basal

cover differences between treatments (r =
–0.01, P = 0.96). Meta-analysis of all 10 sites
showed a significant treatment effect with
increased basal cover with grazing exclusion
(P ≤ 0.05).

Poa secunda, an early growing, small, fine-
leaved grass of limited forage value, averaged
greater basal cover outside the exclosure at 5
of 15 sites at which it occurred (P ≤ 0.05; Fig.
5). Poa secunda had greater basal cover within
the Sage Creek No. 2 exclosure than outside
(P = 0.031). There was not an apparent rela-
tionship between duration of exclusion and
amount of Poa secunda basal cover differences
between grazed and excluded sites (r = –0.11,
P = 0.64). Poa secunda basal cover decreased
with grazing exclusion (P ≤ 0.05), based on
meta-analysis of the 15 sites.

Average cover of perennial forbs ranged
from trace amounts to 24% at the 19 exclosure
sites. Only at 1 site (Boneyard Gulch) did cover
of perennial forbs differ significantly between
treatments, with about a threefold greater forb
cover outside the exclosure (P ≤ 0.001). Phlox
spp. and Lomatium spp. were the principal
contributors to greater cover outside the Bone-
yard Gulch exclosure. There was no apparent
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Fig. 4. Comparison between exclosure sites and adjacent grazed sites for cover of Pseudoroegneria spicata, arranged
by the number of years of grazing exclusion within the exclosure. N. S. groups those sites where the difference between
the exclosure and grazed sites was not statistically significant; P < 0.05 groups those sites where treatment differences
were statistically significant. Error bars denote 95% confidence intervals.
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Fig. 5. Comparison between exclosure sites and adjacent grazed sites for cover of Poa secunda, arranged by number of
years of grazing exclusion within the exclosure. N. S. groups those sites where the difference between exclosure and
grazed sites was not statistically significant; P < 0.05 groups those sites where treatment differences were statistically
significant. Error bars denote 95% confidence intervals.

Fig. 6. Comparison between exclosure sites and adjacent grazed sites for screening in the herb–low shrub layer,
arranged by number of years of grazing exclusion within the exclosure. N. S. groups those sites where the difference
between exclosure and grazed sites was not statistically significant; P < 0.05 groups those sites where treatment differ-
ences were statistically significant. Error bars denote 95% confidence intervals.



treatment effect on perennial forb cover ana-
lyzed across all exclosure sites by meta-analysis
(P ≥ 0.05).

Screening cover in the herb–low shrub layer
was significantly greater inside exclosures at
10 of 19 sites (P ≤ 0.05; Fig. 6). Jeff Flats No. 1
was the only exclosure site where screening
cover averaged greater outside the exclosure
than inside. The relationship between years of
grazing exclusion and differences between
treatments of herb–low shrub layer screening
cover was not significant (r = 0.10, P = 0.70).
Meta-analysis indicated that grazing exclusion
resulted in increased screening cover in the
herb–low shrub layer (P ≤ 0.05).

Artemisia tridentata occurred at 14 of 19
sites. Canopy cover was similar between exclo-
sures and adjacent areas open to grazing. Meta-
analysis indicated no effect on A. tridentata
cover due to grazing exclusion. The lack of
treatment effect remained true when the 2
subspecies of A. tridentata encountered, A. t.
ssp. wyomingensis and vaseyana, were ana-
lyzed separately.

DISCUSSION

Each exclosure site represented a case study
of the effects of grazing exclusion. Exclosures
varied in size (which affected sample sizes),
vegetation types (which affected types of treat-
ment responses possible), and number of years
of exclusion (which could limit the magnitude
of potential treatment responses). Because of
these differences, variability of ecological effects
and effect sizes should be expected, and meta-
analyses are recommended to identify treat-
ment effects for these situations of variable
results commonly encountered in field studies
(Johnson 2002).

Many differences were evident at most
Challis exclosure sites that can be attributed to
the exclusion of livestock grazing. These
include reduction of bare ground cover and
reduction of evidence of soil erosion, increased
principal forage cover, increased cover of cryp-
togams, and increased screening cover. These
differences are consistent with those reported
in reviews of the ecological effects of livestock
grazing (e.g., Fleischner 1994, Belsky and Blu-
menthal 1997). At least some of these differ-
ences were evident at most, but not all, exclosure
sites, indicating that environmental complex-

ity and site history are integral to understand-
ing community responses to livestock grazing
or its exclusion.

Despite changes in grazing management,
continued livestock grazing may hinder the
rate or magnitude of vegetation response com-
pared to livestock exclusion. For example, the
Idaho National Engineering and Environmen-
tal Laboratory (INEEL), a 2315-km2 reserve
about 65 km south of the study area, has been
protected from livestock grazing for 45 years.
Shrub cover increased (during the first 25 years
after livestock exclusion), followed by increased
grass abundance, increased average species
richness, and increased vegetation hetero-
geneity over the next 20 years (Anderson and
Inouye 2001). Vegetation outside the INEEL,
which was available for livestock grazing,
showed a similar although less pronounced
pattern of vegetation change.

West et al. (1984), studying Artemisia tri-
dentata ssp. tridentata shrub steppe (annual
precipitation = 280–347 mm), reported that
exclusion of livestock would not necessarily
improve native perennial grass biomass. They
stated that disturbance was “mandatory” to
return these semiarid communities to domi-
nance by perennial grasses. However, in the
absence of obvious disturbance, many of the
plant communities inside exclosures reported
here showed improvements based on indica-
tors of rangeland health (National Research
Council 1994, Pellant et al. 2000). Valone et al.
(2001), working on arid grassland sites in Ari-
zona (annual precipitation = 222–376 mm),
suggested that there might be time lags of 20
years or more before perennial grasses respond
to livestock grazing removal. For the exclosures
reported here, some exclosures in place for
>30 years showed no difference for principal
grass basal cover, while some exclosures <20
years old had greater grass cover inside exclo-
sures. The lack of correlation between period
of grazing exclusion and vegetation response
suggests that site history and site potential
may be important factors determining rates of
vegetation recovery.

Pseudoroegneria spicata is a principal live-
stock forage species on these rangelands com-
prising as much as 80% of cattle forage use in
Artemisia tridentata wyomingensis communi-
ties (Yeo 1981). Results presented here sug-
gest that cattle preference for P. spicata was
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suppressing its recovery, a situation in which
Poa secunda was apparently capitalizing. Poa
secunda provides less forage and lower nutri-
tive quality than Pseudoroegneria spicata
(Willms and McLean 1978) and, because of its
low growth form, affords less cover for wildlife.

Independent evidence for the Challis area
also suggests that livestock grazing practices
have not allowed P. spicata to recover from
past overgrazing. Range trend monitoring tran-
sects were implemented in the BLM’s Challis
Resource Area in the 1950s. Reexamination of
those that could be found in 2001 (n = 11 tran-
sect clusters) suggested that between the 1950s
and 1970, vegetation cover remained sparse
(Yeo 2001). Even though average vegetation
cover was 26% greater in 2001 than in the
1950s and 1970, P. spicata, typically confined
to protection within shrub canopies in the
1950s, showed little change in cover by 2001
and was still confined to shrub canopies. How-
ever, periods of rest between livestock grazing
may result in improvements of P. spicata cover
in the Challis area, at least within the drier
vegetation types. Within 10 years of imple-
mentation of a rest-rotation grazing system
and with rest periods of ≥3 years, P. spicata
cover increased 42% in Artemisia tridentata
ssp. wyomingensis /Pseudoroegneria spicata
communities (Yeo et al. 1990).

Cryptogams decline under livestock forag-
ing and trampling (Rice and Westoby 1978,
Anderson et al. 1982). Anderson et al. (1982)
reported that cryptogams could recover within
20 years if protected from livestock grazing
and trampling. This study’s results indicate
that cryptogams are impacted by livestock graz-
ing and that recovery is time related. Cryp-
togams are an important component of xeric
landscapes of the West, contribute to soil sta-
bilization and soil moisture retention, influ-
ence nitrogen cycling, and may aid seedling
establishment (West 1990, Belnap 2000).

Grazing exclusion resulted in greater screen-
ing cover in the herb–low shrub layer that has
implications for wildlife. Guidelines for habitat
management for Greater Sage-Grouse (Con-
nelly et al. 2000), pronghorn (Autenreith 1978,
Allen et al. 1984), and sagebrush-dependent
songbirds (Paige and Ritter 1999) recommend
mosaics of native sagebrush communities with
productive herbaceous understories. These
communities afford thermal and security cover

for nests and young fawns, as well as forage for
pronghorn and Greater Sage-Grouse and pro-
ductive communities of insects as food for
Greater Sage-Grouse  and songbirds.

These differences indicate that despite im-
proved livestock grazing management in the
past half century, continued livestock grazing
has limited the potential of some of these
native rangeland communities, or at least slowed
their recovery relative to grazing exclusion.
Greater productivity (particularly of the herba-
ceous understory), greater species richness,
greater extent of cryptogamic soil crusts with
less bare ground and less evidence of soil ero-
sion all are signs of better rangeland health
(National Research Council 1994, Pellant et al.
2000) and benefit not only wildlife with in-
creased forage and cover but also livestock
with increased forage availability. These dif-
ferences were not evident at all sites, and
range managers should be cautious in their
expectations of ecosystem responses to changes
in grazing management. Plant species respond
individually in a nonlinear fashion and at dif-
ferent rates to disturbance or ecosystem stres-
sors, such as drought (Anderson and Inouye
2001), so land managers should expect unpre-
dictable variability to management actions at a
local level. The results reported here, coupled
with other evidence reported in the literature,
clearly indicate the need for monitoring to
guide land management and the worth of con-
trastive experiments such as exclosures to act
as controls or references as part of that moni-
toring (Ford 2000).
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